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Abstract
We report a combined numerical approach to study the localization properties
of the one-dimensional tight-binding model with potential modulated along
the prime numbers. A localization–delocalization transition was found as a
function of the potential intensity; it is also argued that there are delocalized
states for any value of the potential intensity.

PACS numbers: 0365, 7220E, 7210B

Problems related to the distribution of prime numbers are usually interesting and difficult.
Perhaps the most challenging open problem in mathematics is the so-called Riemann hypothesis
on the distribution of the (nontrivial) zeros of his zeta function, a problem directly related to
the distribution of prime numbers and other mathematical issues. Also, the interplay between
number theory, with the set of prime numbers playing a major role, and physics has been
fruitful; see the short note by Wolf [1] and references therein for recent discussions.

In recent years there has been much interest in spectral properties of discrete Schrödinger
operators on l2(Z)

(HV u)n = un+1 + un−1 + λVnun

with nonrandom finite-valued potentials V = {Vn} (see [2–7] and references therein); λ > 0
is the potential intensity. Such one-dimensional models with potentials along almost periodic
sequences taking a finite number of values [2–4], like substitution and circle sequences, have
been dominated by singular continuous spectra. Recall, however, that for the cases of periodic
and random potentials V it is well known that the Hamiltonian HV has absolutely continuous
and point spectra, respectively [8]; these are mathematical characterizations of delocalized and
localized (insulator) behaviours, respectively.

There has also been recent work on Schrödinger operators with sparse potentials [9–13].
A characteristic defining a sparse potential is the constancy of its values in a sequence of
increasing intervals. In this case one can have point, absolutely continuous and singular
continuous spectra, depending on the growing speed of the gaps and how the intensity of the
bumps behaves at infinity. There is, in fact, some competition among different properties of
the potential, resulting in rich spectral possibilities.

The prime numbers are straightforwardly related to both kinds of potential discussed above,
namely nonrandom and sparse. It is well known that the set of prime numbers is not finite

0305-4470/01/160239+05$30.00 © 2001 IOP Publishing Ltd Printed in the UK L239



L240 Letter to the Editor

and that there are arbitrarily large gaps between consecutive primes, a property characterizing
sparseness. By defining a potential V0 = 0, Vn = 1 if n + 1 is a prime number and Vn = 0
if not, and extending symmetrically to negative values of n, i.e. V−n = Vn, one obtains an
instance of a finite-valued sparse potential. The non-negative values of the potential V are
01101010001010001 · · · .

The main aim of this Letter is to discuss numerically the spectral properties of
the corresponding discrete Schrödinger operator, which will be referred to as ‘the prime
Schrödinger operator’. The rigorous analytical study of this system, although desirable, seems
to be subtle and far from trivial. Since in this Letter we consider this problem from just a
numerical point of view, we find it more appropriate to avoid the mathematical spectral terms,
and instead shall try to use the physical ones localization (insulator) and delocalization to
characterize our results.

By exploring dynamical as well as geometrical quantities related to the spectral properties
of the model, we find a (rather smooth) transition from predominantly delocalized states to
localized ones, as the potential intensity is increased. Nevertheless, some delocalized states
always remain, no matter how large the potential. Also, the combined use of geometrical and
dynamical tools, supportive of and to some extent complementary to each other, seems to be
applicable to other cases with coexisting spectral components.

Here two different sets of numerical tools are used in such investigations. The dynamical
tools are the average probability for the system to return to its initial state u0 = δn,n0 ,
concentrated on the site n0,

C(t) = 1

t

∫ t

0
|〈u(s)|u0〉|2 ds

and the second moment

d2(t) =
∑

n

(n − n0)
2|un(t)|2

u = (un)n∈Z. Recall that for large values of t it is expected that C(t) ∼ t−D2 and d2(t) ∼ t2β ,
with D2 being the correlation dimension of the spectral measure associated with the initial
state [14–16]. Continuous spectra are usually numerically characterized by 0 < D2, β;
although it is possible to have exceptional systems with a point spectrum and with any value
0 � β < 1 [17].

Due to the rather irregular distribution of prime numbers [1], we suspect the quantum
dynamics generated by HV can strongly depend on the initial wavefunction, at least for small
times; therefore, the initial condition was always concentrated on n0 = 0. These dynamical
tools were restricted to 0.5 � λ, since for small λ it is not possible to neglect logarithmic
corrections to the algebraic behaviours of C(t) and d2(t) [6].

The other kind of tool, geometrical tools, are the direct inspection of eigenfunctions and
the Lyapunov exponent (LE) γ , also called inverse localization length, calculated for each
eigenfunction of the finite-basis approximation. The typical basis size used here is 104; the
robustness of the numerical calculations with respect to the basis size was verified in each case.
Localization, i.e. a point spectrum, is characterized by nonvanishing γ .

From the Thouless formula [8, 18], in particular from its proof, one sees that the LE at
energy E can be estimated as

γ (E) ≈ 1

N

N∑
j=1

ln |E − Ej |

with Ej running over all eigenvalues (distinct from E) of the finite-basis approximation of
size N .
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Figure 1. LE γ versus energy for the prime Schrödinger operator. (a) λ = 0.5; (b) λ = 1.0;
(c) λ = 3.0; (d) λ = 6.0.

In figure 1 the LE γ is shown as a function of the energy for some values of the potential
intensity λ. For λ = 0.5 the vanishing of the LE for most energies E indicates the predominancy
of delocalized states; by increasing the potential intensity the LE becomes different from zero,
except in a left neighbourhood of E = 0. This phenomenon was verified for all values of
potential intensity considered (up to λ = 40.0), i.e. the LE vanishes just below E = 0.
This strongly indicates a transition from delocalization to localization with a remaining set of
delocalized states near E = 0.

The above conclusions were also supported by numerical solutions of the Schrödinger
equation and computation of dynamical quantities (also with lattice size up to 104). In
figure 2 d2(t) is shown for two values of λ; d2(t) saturates for λ = 6.0 (as well as C(t);
not shown), indicating the presence of localized states; while for λ = 0.5 the values of d2(t)

increase until a critical probability density value is reached at the basis border (|u|2 < 10−6 was
used), indicating the presence of delocalized states. Notice that, due to the presence of both
localized and delocalized states for the prime Schrödinger operator, it can be difficult to retrieve
information on its spectral type only from dynamical quantities. This justifies the choices of
potential intensity values in figure 2, used to exemplify the spectral transition: for λ = 0.5
most states are delocalized, while for λ = 6.0 the energy band corresponding to delocalized
states is very narrow.

Of course, a numerical vanishing LE is not exactly zero. The LE γp for a periodic
case was computed with the above method; since it should be zero in the spectrum of the
corresponding Schrödinger operator, any γ � γp was in practice considered to indicate the
presence of delocalized states for the prime case. This was used to estimate the length of
the interval [−b(λ), 0] of the ‘delocalized band’ as a function of λ. As another check for
such a transition, the dynamical quantities d2(t) and C(t) were computed for short times
taking into account two different sets of eigenvectors: those whose eigenvalues were in the
delocalized band [−b(λ), 0], and those in intervals with positive LE. The distinctions in their
qualitative behaviours are evident. For example, in figure 3 the value λ = 1.0 was fixed and d2
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Figure 2. The second moment d2 as a function of time for (a) λ = 0.5 and (b) λ = 6.0. Notice
the different scales (for λ = 6.0 the time evolution did not reach the basis border).
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Figure 3. The second moment d2 as a function of time for λ = 1.0 (base 10 log–log scale). The
upper curve was obtained taking into account only the eigenvectors whose eigenvalues were in the
range [−0.6, 0.0]. The lower curve is similar, but with eigenvalues in the range [1.6, 2.0] (see also
figure 1(b)).
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Figure 4. Delocalized band length b as a function of the potential intensity λ (base 10 log–log
scale). The best fitting line is also shown.

was computed by restricting the dynamics to eigenvalues in the range [−0.6, 0.0] (a subset
of [−b(1), 0]) and also to eigenvalues in the range [1.6, 2.0] (corresponding to positive LE).
In the former case d2(t) grows with time, while in the latter case it is clearly bounded; such
results also support the presence of mobility edges in the spectrum of the prime Schrödinger
operator.

Figure 4 shows some values of b(λ); the best fitting line is also shown and its slope is
equal to −1. Therefore, it is numerically found that b(λ) ∼ λ−1, at least for large λ, so it does
not vanish and the spectrum of the prime Schrödinger operator should have a set of delocalized
states for any potential intensity. Notice that the eigenfunctions corresponding to eigenvalues
in the range [−b(λ), 0] are extended over the finite bases, while they are exponentially localized
if the corresponding LE is greater than zero (not shown here).
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In summary, a delocalization–localization transition, with mobility edges, was found
numerically for the one-dimensional prime Schrödinger operator, a transition as the intensity
of the potential is increased; however, there remains a band of delocalized states whose length
scales as ∼λ−1, assuring the presence of delocalized states for any value of λ. These results,
and the calculations presented, suggest that the same approach could be applied to cases with
other aperiodic potentials, for which one suspects simultaneous continuous and point spectral
components.
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